connections for continuity, and all mechanical connections for leakage. - (3) As an alternative to the \widetilde{CPMS} required in paragraph (e)(2) of this section, you may use a pH probe to extract a sample for analysis by a pH meter that meets the requirements in paragraphs (e)(3)(i) through (iii) of this section. - (i) The pH meter must have a range of at least 1 to 5 or more; - (ii) The pH meter must have an accuracy of ±0.1; and - (iii) The pH meter must have a resolution of at least 0.1 pH. - (f) You must operate each CPMS used to meet the requirements of this subpart according to the requirements specified in paragraphs (f)(1) through (3) of this section. - (1) Each CPMS must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of three of the required four data points to constitute a valid hour of data. - (2) Each CPMS must have valid hourly data for 100 percent of every averaging period. - (3) Each CPMS must determine and record the hourly average of all recorded readings and the 3-hour average of all recorded readings. - (g) For each automated conveyor and pallet cooling line and automated shakeout line at a new iron and steel foundry subject to the VOHAP emissions limit in §63.7690(a)(10), you must install, operate, and maintain a CEMS to measure and record the concentration of VOHAP emissions according to the requirements in paragraphs (g)(1) through (3) of this section. - (1) You must install, operate, and maintain each CEMS according to Performance Specification 8 in 40 CFR part 60, appendix B. - (2) You must conduct a performance evaluation of each CEMS according to the requirements of §63.8 and Performance Specification 8 in 40 CFR part 60, appendix B. - (3) You must operate each CEMS according to the requirements specified in paragraph (g)(3)(i) through (iv) of this section. - (i) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, ana- lyzing, and data recording) for each successive 15-minute period. - (ii) You must reduce CEMS data as specified in §63.8(g)(2). - (iii) Each CEMS must determine and record the 3-hour average emissions using all the hourly averages collected for periods during which the CEMS is not out-of-control. - (iv) Record the results of each inspection, calibration, and validation check. ### § 63.7742 How do I monitor and collect data to demonstrate continuous compliance? - (a) Except for monitoring malfunctions, associated repairs, and required quality assurance or control activities (including as applicable, calibration checks and required zero and span adjustments), you must monitor continuously (or collect data at all required intervals) any time a source of emissions is operating. - (b) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emissions or operating levels or to fulfill a minimum data availability requirement, if applicable. You must use all the data collected during all other periods in assessing compliance. - (c) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions. ## §63.7743 How do I demonstrate continuous compliance with the emissions limitations that apply to me? - (a) You must demonstrate continuous compliance by meeting the applicable conditions in paragraphs (a)(1) through (12) of this section: - (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, - (i) Maintaining the average PM concentration in the exhaust stream at or below 0.005 gr/dscf; or - (ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0004 gr/dscf. #### § 63.7743 - (2) For each cupola metal melting furnace at an existing iron and steel foundry, - (i) Maintaining the average PM concentration in the exhaust stream at or below 0.006 gr/dscf; or - (ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0005 gr/dscf. - (3) For each cupola metal melting furnace or electric arc metal melting furnace at new iron and steel foundry, (i) Maintaining the average PM concentration in the exhaust stream at or below 0.002 gr/dscf; or - (ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0002 gr/dscf. - (4) For each electric induction metal melting furnace or scrap preheater at a new iron and steel foundry, - (i) Maintaining the average PM concentration in the exhaust stream at or below 0.001 gr/dscf; or - (ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.00008 gr/dscf. - (5) For each pouring station at an existing iron and steel foundry, - (i) Maintaining the average PM concentration in the exhaust stream at or below $0.010~\rm gr/dscf;$ or - (ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0008 gr/dscf. - (6) For each pouring area or pouring station at a new iron and steel foundry, - (i) Maintaining the average PM concentration in the exhaust stream at or below 0.002 gr/dscf; or - (ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0002 gr/dscf. - (7) For each building or structure housing any emissions source at the iron and steel foundry, maintaining the opacity of any fugitive emissions discharged to the atmosphere at or below 20 percent opacity (6-minute average), except for one 6-minute average per hour that does not exceed 27 percent opacity. - (8) For each cupola metal melting furnace at a new or existing iron and steel foundry, maintaining the average VOHAP concentration in the exhaust stream at or below 20 ppmv corrected to 10 percent oxygen. - (9) For each scrap preheater at an existing new iron and steel foundry that does not comply with the work practice standard in §63.7700(e)(1) or (2) and for each scrap preheater at a new iron and steel foundry that does not comply with the work practice standard in §63.7700(f), maintaining the average VOHAP concentration in the exhaust stream at or below 20 ppmv. - (10) For one or more automated conveyor and pallet cooling lines or automated shakeout lines that use a sand mold system at a new iron and steel foundry, - (i) Maintaining the 3-hour flow-weighted average VOHAP concentration in the exhaust stream at or below 20 ppmv; - (ii) Inspecting and maintaining each CEMS according to the requirements of §63.7741(g) and recording all information needed to document conformance with these requirements; and - (iii) Collecting and reducing monitoring data for according to the requirements of §63.7741(g) and recording all information needed to document conformance with these requirements. - (11) For each TEA cold box mold or core making line at a new or existing iron and steel foundry, maintaining a 99 percent reduction in the VOHAP concentration in the exhaust stream or maintaining the average VOHAP concentration in the exhaust stream at or below 1 ppmv. - (12) Conducting subsequent performance tests at least every 5 years for each emissions source subject to an emissions limit for PM, total metal HAP, VOHAP, or TEA in §63.7690(a) and subsequent performance tests at least every 6 months for each building or structure subject to the opacity limit in §63.7690(a) (7). - (b) You must demonstrate continuous compliance for each capture system subject to an operating limit in \$63.7690(b)(1) by meeting the requirements in paragraphs (b)(1) and (2) of this section. - (1) Operating the capture system at or above the lowest values or settings established for the operating limits in your operation and maintenance plan; and - (2) Monitoring the capture system according to the requirements in #### **Environmental Protection Agency** §63.7740(a) and collecting, reducing, and recording the monitoring data for each of the operating limit parameters according to the applicable requirements in this subpart. - (c) For each baghouse equipped with a bag leak detection system, - (1) Maintaining records of the times the bag leak detection system alarm sounded, and for each valid alarm, the time you initiated corrective action, the corrective action taken, and the date on which corrective action was completed; and - (2) Inspecting and maintaining each baghouse according to the requirements of §63.7740(b)(1) through (8) and recording all information needed to document conformance with these requirements. - (d) For each wet scrubber that is subject to the operating limits in §63.7690(b)(2), you must demonstrate continuous compliance by: - (1) Maintaining the 3-hour average pressure drop and 3-hour average scrubber water flow rate at levels no lower than those established during the initial or subsequent performance test; - (2) Inspecting and maintaining each CPMS according to the requirements of §63.7741(c) and recording all information needed to document conformance with these requirements; and - (3) Collecting and reducing monitoring data for pressure drop and scrubber water flow rate according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements. - (e) For each combustion device that is subject to the operating limit in $\S63.7690(b)(3)$, you must demonstrate continuous compliance by: - (1) Maintaining the 15-minute average combustion zone temperature at a level no lower than 1,300 $^{\circ}F$; - (2) Inspecting and maintaining each CPMS according to the requirements of §63.7741(d) and recording all information needed to document conformance with these requirements; and - (3) Collecting and reducing monitoring data for combustion zone temperature according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements. - (f) For each combustion device that is subject to the operating limit in §63.7690(b)(4), you must demonstrate continuous compliance by: - (1) Maintaining the 3-hour average combustion zone temperature at a level no lower that established during the initial or subsequent performance test; - (2) Inspecting and maintaining each CPMS according to the requirements of §63.7741(d) and recording all information needed to document conformance with these requirements; and - (3) Collecting and reducing monitoring data for combustion zone temperature according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements. - (g) For each acid wet scrubber subject to the operating limits in \$63.7690(b)(5), you must demonstrate continuous compliance by: - (1) Maintaining the 3-hour average scrubbing liquid flow rate at a level no lower than the level established during the initial or subsequent performance test; - (2) Maintaining the 3-hour average pH of the scrubber blowdown at a level no higher than 4.5 (if measured by a CPMS) or maintaining the pH level of the scrubber blowdown during each production shift no higher than 4.5; - (3) Inspecting and maintaining each CPMS according to the requirements of §63.7741(e) and recording all information needed to document conformance with these requirements; and - (4) Collecting and reducing monitoring data for scrubbing liquid flow rate and scrubber blowdown pH according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements. If the pH level of the scrubber blowdown is measured by a probe and meter, you must demonstrate continuous compliance by maintaining records that document the date, time, and results of each sample taken for each production shift. # §63.7744 How do I demonstrate continuous compliance with the work practice standards that apply to me? (a) You must maintain records that document continuous compliance with